Lynx!

Trigonometry is often a terrifying topic for students taking a first calculus class in college. America's trig teaching seems a bit haphazard, and we can't assume students have a good grasp of periodic functions.

This summer project is clearly not offering a full calc curriculum, but instead offering supplemental material. A good lesson on the unit circle is a first step in any college calc discussion of trig. After that, though, students may find practice with a variety of trig problems useful. You can look at particle motion and springs and all sorts of mechanical applications, or you can use a cute and fuzzy animal that also has sharp teeth and claws.... the lynx!

A lot of arctic populations including lynx, snowshoe hare, and lemmings have cyclic population fluctuations and there is a lot of research about why this is. If you've got students in ecology you can ask them to tell you about this in more detail: this is a great topic for a small project or extra credit assignment.

I love this family of examples: there is so much room for discussion of the real world, from foxes and rabbits in my own neighborhood to the wolves and moose of Isle Royale. The examples work so well from precalculus through multivariable, linear algebra, and differential equations. Students can easily experiment with changing parameters in their models, using Excel or more sophisticated programs. And it's all about the circle of life, one of the most compelling stories we as humans know!

Alright then. To the worksheet. I may be a bit dissatisfied with this one yet for reasons I'll outline below. The instructor should display a graph of the actual data, included below. Students then work through 

  • constructing a trigonometric function from the amplitude and period, 
  • considering the shape of the actual data as they construct the function, and
  • critiquing their model at the end.

As so often is true in modelling, our first instinct -- the sinusoidal function -- is not actually most accurate. If you've got access to the lynx data (you can also find it as a dataset in R, the stats program) you can check that the logarithm of the data is actually more sinusoidal! Look at the long troughs in the the non-log graph, along with the sharper peaks. With students you can use the idea of symmetry to discuss why a sinusoidal approximation is not the best for the non-log-transformed data: the graph does not have reflect-and-glide symmetry, unlike cosine and sine. I, though, honestly don't yet know a good mathematical explanation for the fact that the logarithm of the population data has a more sinusoidal shape. I'd love to hear one.

Worksheet constructing periodic function for lynx trapping

Plot of lynx trapping over time

Plot of logarithm of lynx trapping over time

I know that someone other than me has looked at this blog in the past week! Question of the day: do you use cute fuzzy animals to increase interest and engagement in class?

Group work and a power function for atmospheric pressure

We instructors of calculus know that linear models aren't everything, even though linearization is in some sense the point of the differential calculus. Since the first week of many calculus courses begins with a precalc review including power functions, I'll just move smoothly along to a power function model for atmospheric pressure! (Don't worry: we'll get to lynx trapping in the Yukon for a trig review activity in a day or two -- not everything is about physics or the atmosphere.)

It's always important to remind students about the difference between power functions and exponential functions, not least because they've got different differentiation rules. One nice way to look at power functions and exponential functions is by looking at growth -- we know that  x^2 and  2^x grow at very different rates. But everyone does that... and I was having fun with atmospheric pressure! This worksheet has a very funky power -- 1/0.19... -- and might be a good way to acquaint students with the messiness of real-life models. I will return to this topic when we get to derivative and integrals, too, because this equation is actually fairly easy to derive.

The worksheet below tries to foreshadow the idea of the derivative fairly heavily. It asks about 

  • composition of functions,
  • intervals of increase and decrease, and
  • slope of the tangent line.

As usual, I try to incorporate a bit of writing and thinking about the meaning of a model as well. There's definitely room for discussion around these worksheets.

In addition, you might notice that there's a bit of tedious calculation at the beginning. Why would an enlightened modern instructor do that? I like to give these worksheets to students in groups. At the beginning of the semester I always give a student survey asking about past math experience, major, problems or gifts I should know about, outside interests, favorite dessert, favorite color.  In the first few weeks of class I use this to arrange student groups and ask them to figure out how I've grouped them (by major, dessert, color, last name...!). Giving them just a bit more tedious calculation than most people would enjoy gives me a chance to encourage and incentivize conversation within groups even more.

This week's worksheet: atmospheric pressure as a power function!

A better model: power function

There's also a natural place to discuss solving for the inverse function here, and I might add a worksheet about that soon too.

Do you use group work or worksheets with students? Why or why not? What kinds of constraints do you have to deal with in considering group work?

A linear beginning

I've taught calculus now at several different college and universities. Calc is a funny class these days: students who have done quite well in high school math now often enter a linear algebra or multivariable calculus class directly, so students in calculus come from a variety of backgrounds but often did not have a good high school math experience. Often students in college calculus classes took the AP calculus offered in high school with varying results. A surprisingly high number of students I've seen in college calc did not even take precalculus in high school. This is generally a recipe for disaster.

During the fall and spring semesters I start every calculus section with a conversation about what calculus is good for and what other classes a student could take to fulfill requirements. I like to push statistics and math for liberal arts majors courses: statistics is becoming crucial to survival and innovation in a number of fields, from finance to medicine, and math for liberal arts majors classes often expose a student to graph theory, voting theory, and other useful techniques for looking at problems we all encounter in life. There is so much beautiful mathematics! Don't get stuck on calculus as the only way forward!

After that, it's time to start with review. I phrase it as a warm-up: here are things you will need to dredge out of your brain and reacquaint yourself with to be successful in calculus. First is the point-slope equation for a line.

The worksheet attached explores the change in atmospheric pressure as we increase in altitude from San Francisco to Denver to the peak of Mount Everest. In it, students develop a linear approximation for pressure in kilopascals from two data points (no use of derivatives), and then examine the validity of their approximation. Use this to explore:

  • how to work through a word problem
  • the point-slope equation for a line, introducing the idea of slope as rate of change
  • critical thinking about models: comparing theoretical and actual results can point out weaknesses in a model!

When discussing this worksheet, remember that temperature, humidity, and weather patterns affect the pressure of our atmosphere as well. Some of the lowest pressure readings ever taken near the Earth's surface have been in the centers of hurricanes, for instance. In calculus we study "baby problems" so that we can eventually build up the techniques to model situations more accurately -- like scales before playing Beethoven.

Linear Functions -- Head in the Clouds Worksheet

How do you start out your calculus classes in the first few days? How much review do you do? Do you think all of your students are best served by calculus?

Approaching calculus through an earth-lens

Calculus is the study of 

  • the rate of change of quantities,
  • the net change of quantities, and
  • relations between quantities and their rate of change.

Our planet earth, too, is all about change: we see it in the weather, animal populations, even the height of mountains over time! With such a natural overlap in subject matter, the calculus of the mathematics of planet earth is ripe for more exploration.

In this summer blog, I'm planning to look at a few different stories:

  • the periodic fluctuations in the populations of arctic lemmings and snowshoe hares, and possible effects of climate instability
  • our atmosphere: you probably know that it's harder to get enough oxygen at the top of Mount Everest, but did you know we have a "gas leak"?
  • water: the most important resource for human existence and a major  factor in climate. How are we using water and what is the health of our aquatic ecosystems?

As we go, there will certainly be some side trips. I love learning about different things, and along the way I've discovered that chickens adjust their dry matter intake based on temperature and that ibuprofen in waterways is degraded by sunlight. Right there we've got an optimization problem and a related rates project! If you've got suggestions or comments, let me know via email or the comments below each post. My hope is that this blog will serve as a resource for instructors and provide a space for conversation for professors and teachers of calculus.

Hello world!

This is my first post. The blog celebrates the "year of the mathematics of planet earth" - 2013! The real thing will start up next week: stay tuned for posts on calculus and planet earth that you can use in your summer calculus classes.